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Outline

 What is recurrent events?
 Why consider recurrent events? 

(Compared to first event)
 Models in absence of mortality
 Models in presence of mortality
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Recurrent events
 Occurrence of similar events over time
 Examples: Multiple sclerosis; Heart failure; Hospitalizations

 Overall frame:
Events experienced a few times (excludes epileptic seizures 
and diabetic hypoglycemia).
Events experienced and recorded separately (time-stamped). 
Events may have consequences (such as mortality; additional 
treatment)
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Why use recurrent events?
 Current analysis method: Time-to-first-event only
 Methods: Logrank test or Cox model
 Advantage: Statistical independence between events; implying 

simple analysis. No need to consider consequences such as 
mortality after an event

 Arguments for using all events instead:
 Better reflection of disease burden (slogan: ”The second event 

is as bad as the first” both for the individual patient and for the 
society)

 Time-to-first-event suffers from selection effects
 Potentially better statistical efficiency
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Part 1: Mortality not considered
 Multi-state model:

 Three ways to illustrate observed data:
 Running time     Gap times  Counting process

 Continuous observation (0,C]
 Times of events: T1,…TN,   (N random; N ε {0,1,2,…})
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Meaning of T1?
 T1: age of woman when having her first child
 For a woman having children, T1 is well-defined
 For a woman never having children, we formally define

T1 =  ∞, but can only observe T1 > C, (C is end of observation)
 This solves the issue of old women without children

but does not handle mortality
 Is this a problem or just an odd way of saying things?

 A multi-state model does not need to define T1

 The ”hazard” of giving birth is defined as
λ0(t)=limΔt→0 Prob{delivering child between age t and t+ Δt│Alive at age t and 
without children}/ Δt

 The event of never having children is reflected by limt→∞ ∫0t λ0(u) du < ∞
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Choice of time scale
 Possibility 1: Running time (time since start – birth or 

treatment start): 0 < T1 < T2 < T3 …

 Possibility 2: Gap times (time since most recent event)       
Note: First event must be handled differently than later events.          
Δ1 = T1, Δ2 = T2 - T1, Δ3 = T3 – T2, … 

 Model overlap: Constant hazard (exponential gap times with 
same parameter). Too restrictive (in my mind)

 In a typical drug trial, I recommend the running time approach. 
One reason is that the accumulated number of events is a 
meaningful quantity (see later)
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Poisson process model
 Hazard of an event conditional on the history until that time is λ(t) 

(independent of history)
 All subjects have the same risk (extendable in regression models)
 Two events in small interval has small probability (no simultaneous 

events)
 => Independent increments  Nt

 Derived period count (Poisson distributed) over (0,t],
using η=∫0t λ(u) du, 

 Pr (Nt =n)= ηn exp(-η) / n!
 E Nt =η; Var(Nt) = η

 Regression model:
 λ(t;z)= λ(t) exp(β z)
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Extension to handle dependence 
within subjects 
 Poisson:
 EdNt = λ(t)   conditional on history at time t 

(independent increments)

 Marginal models:
 dENt = λ(t) 
 Use Poisson estimate (Nelson-Aalen) but calculate 

robust variance estimate (GEE)
 Details not presented
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Multi-state hazard modelling
 The multi-state setup is sufficiently flexible to handle more complex 

models, with covariates describing the history:

 First event:
 λ0(t;z)= λ0(t) (stratified)
 λ0(t;z)= λ0(t) exp(β z)

 After experiencing j events:
 λj(t) (stratified) (Markov) (Aalen-Johansen)
 λj(t;z)= λj(t) exp(β z) (Markov) (Prentice, Williams and Peterson (1981))
 λj(t;z)= λ(t) exp(β z +γj) (Markov)

 Easy to fit – But can we interpret the results???
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Issues with multi-state models
 Issue 1: Number of events before time t
 Example (no covariates): λj(t) (Markov)
 Prob (no events before t): exp (- ∫0t λ0(u) du)
 Prob (Nt =1): ∫0t λ0(u) exp [– Λ0(u) – {Λ1(t) – Λ1(u)}] du)
 Complexity increases with number of events
 No expression for mean or other summaries

 Issue 2: Which regression model?
 Estimation easy for many different regression models, but not clear 

which model gives the best reflection of the treatment effect
 As hazard functions condition on the event history, they suffer from 

selection effects. Not automatic that comparing, say, λj(t), between 
treatments gives a full picture of the usefulness of a treatment
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Conditional Poisson (frailty) 
models

 Subject differences can be modelled as frailty model 
(overdispersion compared to Poisson)

 Hazard:  Y μ(t), conditional on Y (subject random effect)
t: time since study start; not time since latest event

 Poisson process conditional on Y =>
Nt is Poisson (Y M(t)│Y)

 Many choices for distribution of Y possible (Hougaard, 2000) 
but the talk only considers the gamma distribution where the 
event count follows a negative binomial distribution,  
Greenwood and Yule (1920)
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Relationships (without covariates)
 Poisson model conditional on Y 
 Hazard: Y μ(t), 
 Mean #events before t: Y M(t)

 Model when Y (gamma distributed, δ) is integrated out
 Hazard (first event): λ0(t) = μ(t) δ/ (δ+M(t))
 Hazard (conditional on having j events):

λj(t) = μ(t) (δ+j) / (δ+M(t)) = λ0(t) (δ+j)/ δ
 Mean #events before t: M(t)
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Relationships (with covariates)
 Poisson model conditional on Y 
 Hazard: Y μ(t) exp(β z)
 Mean #events before t: Y M(t) exp(β z)
 Hazard ratio (z vs 0) = Mean ratio = exp(β z)

 Model when Y (gamma distributed, δ) is integrated out
 Hazard (first event): λ0(t;z) = μ(t) exp(β z) δ/ (δ+M(t) exp(β z))
 Hazard (conditional on having j events):

λj(t;z) = μ(t) exp(β z) (δ+j) / (δ+M(t) exp(β z)) = λ0(t;z) (δ+j)/ δ
 Mean #events before t: M(t) exp(β z)
 Hazard ratio (z vs 0) = exp(β z) (δ+M(t)) / (δ+M(t) exp(β z)) 
 Mean ratio = exp(β z)
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Conclusion from previous slides
 Suppose event occurrence is derived from a patient random effect 

setup (gamma frailty)

 A hazard ratio treatment effect conditionally => Same effect ratio for 
mean number of events conditionally => Same effect ratio for mean 
number of events unconditionally

 Different treatment effect on hazard functions unconditionally on frailty 
(conditional on history).
Interpretation: Selection effects make the treatment appear less 
effective and the treatment effect appears to fade out over time. 
Conclusion: Considering only the time to first event gives an 
insufficient assessment of the treatment effect.
Solution: Clinical trial to assess recurrent events rather first event only
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Part 2: Recurrent events
and mortality
 Mortality may occur in a clinical trial due to age; initial disease; 

treatment; study duration
 Patients do not get recurrent events after death
 Depending on the statistical approach used, this may make a 

treatment with high mortality appear as a treatment with few events:
Is this preferred or are there approaches, where it does not happen?

 It cannot simply be assumed that recurrent events and death are 
independent

 The relation ”Mean #events before t = M(t)” is lost as only survivors 
can get events. Left hand side refers to all patients, but right hand side 
is conditional on surviving to time u:  (M(t)= ∫0t μ(u)du)
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Target for estimation
 Number of events (Nt): as events do not occur after death, the number can 

be low if mortality is high

 Integrated hazard (M(t)): The hazard refers to the at any time survivor

 Without mortality:
 ENt = M(t)
 With mortality:
 ENt < M(t)

 Q1: Which one do you prefer for assessing a treatment in a clinical trial?

 Q2: Is mortality controlled by the same factors as the events?: Measured
or unmeasured?
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Same factors for mortality and 
recurrent events (1): Measured
 If measured (like treatment) and the covariate 

included in the model, this is not wrong in the 
technical sense, but looking at recurrent events and 
deaths separately may not give the full picture

 Treatment effect the same for death as for recurrent 
events???
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Same factors for mortality and 
recurrent events (2): Unmeasured

 If unmeasured, a joint model including frailties may 
be considered, like Y1 for recurrent events and Y2 for 
death

 Frailty Y1 is well-defined but not necessarily Y2
(because death is univariate) so the model has to be 
chosen with care:

 Model 1 (Rogers et al, 2014): Shared Y1 = Y2

 Model 2 (Rogers et al, 2016): Y1
α = Y2
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Summing up: 3 problems
 1. Events do not occur after death, which could make a high-

mortality treatment appear as giving few events
 2. Events and deaths cannot be assumed independent
 3. Treatment effect might differ between events and deaths

 Potential solutions:
 1. Assess integrated hazards instead of realized events
 2. Make a joint frailty model
 3. Evaluate treatment effects separately

 Neither of these solutions fit into the estimand concept 
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Application: Rogers et al (2016) 
CHARM-added 

Candesartan Placebo
Randomized 1276 1272
Follow-up time 3848 y 3713 y
CV deaths 302 347
Other deaths 75 65
First HF hospitalization 323 380
Later HF hospitalizations 266 433
Primary composite 497 561
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Analysis results
 Protocol (composite): HR = 0.833 (CI: 0.74-0.94), p=0.003

 Cox CV-death: HR = 0.842 (0.72-0.98), p=0.029

 JFM CV-death: HR = 0.839 (0.70-1.01), p=0.065
 JFM HF hospitalizations: HR: 0.650 (0.53-0.80), p<0.0001
 θ= 3.751; α=0.688

 Results compatible with the theory:
 Different treatment effects (hospitalization vs. CV-death)
 Different treatment effects (first vs. later hospitalization due to 

selection)
 Dependence between hospitalization and CV-death (α)
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Estimands
 Without mortality:
 Mean number of events before time t0
 Treatment effect:

Ratio of means (In conditional Poisson model same as ratio of 
integrated hazards) 

 With mortality:
 Mean number of events before time t0 (not preferred as events 

do not occur after death)
 Treatment effect:

In conditional Poisson model: ratio of integrated hazards
In marginal model: ratio of integrated hazards
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Conclusion
 Relevant to consider recurrent events in clinical trials: Reflection of 

disease burden; no selection effects; more information

 There are statistical approaches to handle recurrent events: both 
model-based and non-model-based

 The choice is really between:
 First event only: Throw data away and get a simple conclusion
 Recurrent events: Use all data and get a more informative 

conclusion (which, of course, is more difficult to express)

 Mortality makes statistical calculations more difficult but we still 
have tools 
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Censoring patterns
 The Poisson, multi-state and frailty models allow censoring 

depending on the realized number of events
 Censoring not allowed to depend on the unobserved frailty
 Marginal models require censoring completely independent of 

recurrent event process
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Application: Mammary tumors 
(rats)
 Female rats injected with carcinogen day 0
 Survivors (day 60) treated with retinoid (n=23) or control (n=25)
 Time in days to appearance of tumor(s) until day 182 (same period!)

 Poisson (day 60-182): R: 61/23=2.65; C: 149/25=5.96. Ratio of means: 
0.445 (0.068)

 Negative binomial (gamma frailty): Ratio of means 0.445 (0.094). 
Significantly better fit

 Data: Gail, Santner and Brown (1980)
 Analysis: Hougaard (2000, p. 336)
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